Laws of Exponents

Laws of Exponents

The laws of exponents are explained here along with their examples.

1. Multiplying Powers with same Base

For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴
In multiplication of exponents if the bases are same then we need to add the exponents.
Consider the following: 
1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 23+2 = 2⁵
2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 34+2 = 3⁶
3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]
                        = (-3)3+4 
                        = (-3)⁷
4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)
                  = m5+3 
                  = m⁸
From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added.

aᵐ × aⁿ = am+n

In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then

aᵐ × aⁿ = am+n
Similarly, (ab)ᵐ × (ab)ⁿ = (ab)m+n
(ab)m×(ab)n=(ab)m+n

Note: 

(i) Exponents can be added only when the bases are same.

(ii) Exponents cannot be added if the bases are not same like

m⁵ × n⁷, 2³ × 3⁴

For example:

1. 5³ ×5⁶

= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)

= 53+6, [here the exponents are added] 

= 5⁹

2. (-7)10 × (-7)¹²
= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [( -7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].

= (-7)10+12, [Exponents are added] 

= (-7)²²

3. (12)4 × (12)3
=[(12) × (12) × (12) × (12)] × [(12) × (12) × (12)] 
=(12)4+3

=(12)⁷

4. 3² × 3⁵

= 32+5

= 3⁷

5. (-2)⁷ × (-2)³

= (-2)7+3

= (-2)10

6. (49)³ × (49

= (49)3+2

= (49)⁵

We observe that the two numbers with the same base are

multiplied; the product is obtained by adding the exponent.

2. Dividing Powers with the same Base

For example:

3⁵ ÷ 3¹, 2² ÷ 2¹, 5(²) ÷ 5³

In division if the bases are same then we need to subtract the exponents.

Consider the following: 

2⁷ ÷ 2⁴ = 2724

            = 2×2×2×2×2×2×22×2×2×2
            = 274
            = 2³

5⁶ ÷ 5² = 5652

            = = 5×5×5×5×5×55×5
            = 562 
            = 5⁴
10⁵ ÷ 10³ = 105103
                = 10×10×10×10×1010×10×10
                = 1053
                = 10²
7⁴ ÷ 7⁵ = 7475
            = 7×7×7×77×7×7×7×7
            = 745 
            = 71
Let a be a non zero number, then

a⁵ ÷ a³ = a5a3

            = a×a×a×a×aa×a×a
            = a53 
            = a²
again, a³ ÷ a⁵ = a3a5
                     = a×a×aa×a×a×a×a
                     = a(53)
                     = a2
Thus, in general, for any non-zero integer a,

aᵐ ÷ aⁿ = aman = amn

Note 1: 

Where m and n are whole numbers and m > n;

aᵐ ÷ aⁿ = aman = a(nm)

Note 2: 

Where m and n are whole numbers and m < n;

We can generalize that if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, such that m > n, then

aᵐ ÷ aⁿ = amn if m < n, then aᵐ ÷ aⁿ = 1anm

Similarly, (ab)m ÷ (ab)n = ab 
For example:
1. 710 ÷ 7⁸ = 71078
                             = 7×7×7×7×7×7×7×7×7×77×7×7×7×7×7×7×7

                             = 7108, [here exponents are subtracted] 

                             = 7²

2. p⁶ ÷ p¹ = p6p1

               = p×p×p×p×p×pp
               = p61, [here exponents are subtracted] 
               = p⁵

3. 4⁴ ÷ 4² = 4442

                = 4×4×4×44×4

                = 442, [here exponents are subtracted] 

                = 4²

4. 10² ÷ 10⁴ = 102104

                   = 10×1010×10×10×10

                   = 10(42)[See note (2)] 

                   = 102
5. 5³ ÷ 5¹

= 531

= 5²

6. (3)5(3)2

= 352

= 3³

7. (5)9(5)6

= (-5)96

= (-5)³

8. (72)⁸ ÷ (72)⁵

= (72)85

= (72

3. Power of a Power

For example: (2³)², (5²)⁶, (3² )3

In power of a power you need multiply the powers.

Consider the following

(i) (2³)⁴

Now, (2³)⁴ means 2³ is multiplied four times

i.e. (2³)⁴ = 2³ × 2³ × 2³ × 2³

=23+3+3+3

=2¹²

Note: by law (l), since aᵐ × aⁿ = am+n.

(ii) (2³)²

Similarly, now (2³)² means 2³ is multiplied two times

i.e. (2³)² = 2³ × 2³

= 23+3, [since aᵐ × aⁿ = am+n

= 2⁶

Note: Here, we see that 6 is the product of 3 and 2 i.e,

                         (2³)² = 23×2= 2⁶

(iii) (42

Similarly, now (42)³ means 42
 is multiplied three times
i.e. (42)³ =42 × 42 × 42
= 42+(2)+(2)
= 4222

= 46

Note: Here, we see that -6 is the product of -2 and 3 i.e,

                (42)³ = 42×3 = 46
For example:

1.(3²)⁴ = 32×4 = 3⁸

2. (5³)⁶ = 53×6 = 5¹⁸
3. (4³)⁸ = 43×8 = 4²⁴
4. (aᵐ)⁴ = am×4 = a⁴ᵐ
5. (2³)⁶ = 23×6 = 2¹⁸
6. (xᵐ)n = xm×(n) = xmn
7. (5²)⁷ = 52×7 = 5¹⁴
8. [(-3)⁴]² = (-3)4×2 = (-3)⁸
In general, for any non-integer a, (aᵐ)ⁿ= am×n = amn
Thus where m and n are whole numbers. 
If ‘a’ is a non-zero rational number and m and n are positive integers, then 
{(ab)ᵐ}ⁿ = (ab)
For example:

Laws of Exponents or Indices[(25)³]²

= (25)3×2

= (25)⁶

Telegram Group Join Now
WhatsApp Group Join Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top